Diploma in Smart Cities: Integrating Technology and Sustainability for the Future of Urban Living

Program Length: 72 hours, 24 classes

Barberi Faculty of Engineering, Design and Applied Sciences

Agenda

Cali, Colombia's Pacific Capital: Chocó Biogeographic Region Valley and hills woven together by green and blue infrastructure

Fuente: https://bellasartes.edu.co/festivalruquitavelasco/valle-del-cauca/

Fuente: https://www.researchgate.net/publication/282956397_Composition_of_lianas_and_vines_in_the_Colombian_Choco

Cali, Colombia's Pacific Capital: Cali is Cali, and the hills are part of it too Valley and hills woven together by green and blue infrastructure

Fuente: https://www.behance.net/gallery/54861947/llustraciones-para-Carucos-%28Cocreacion%29

Cali, Colombia's Pacific Capital: Parque Integral Cristo Rey Valley and hills woven together by green and blue infrastructure

Fuente: https://www.elpais.com.co/cali/cali-tendra-el-corredor-biologico-peatonal-mas-extenso-de-colombia-0139.html

Cali, Colombia's Pacific Capital: Cali's Future Green Corridor Valley and Hills woven together by green and blue infrastructure

Latin-American Context Common Urban Challenges and Opportunities for Transformation

Latin-American Context Common Urban Challenges and Opportunities for Transformation

Fuente: https://www.qhubocali.com/asi-paso/cali-es-cali-construyeron-en-una-terraza-y-frenaron-el-regreso-del-mio-cable/

Fuente: Imagen de la Alcaldía de Medellín [medellin.gov.co]

Latin-American Context: Parques del Rio Common Urban Challenges and Opportunities for Transformation

Medellín, Colombia, Parques del Rio.

- City-river connection for equity and sustainability
- 280 trees planted to enhance the urban environment
- Medellín as an ecocity and a refuge for biodiversity

Fuente: https://landscape.coac.net/parques-del-rio-medellin

Global Context: Learning from South Korea Holistic City Planning: Integrating Nature Based Solutions, People, and Technology

Cheongyecheon River

- It is a tributary of the Han River.
- It is 5.8 km long.
- It flows into the Yellow Sea.

Global Context: Learning from South Korea Holistic City Planning: Integrating Nature Based Solutions, People, and Technology

Context: Smart Cities A holistic and interdisciplinary approach in harmony with life

Improving Quality of Life

Improve the well-being of people in harmony with the environment.

Participatory Policies and Governance & Strategic Alliances

Inclusive policies, involve citizens in decision-making, and form strategic alliances.

Smart Mobility

Inclusive mobility and efficient, connected transportation systems

Innovation and Technology

Responsible use of AI and data science, implementation of solutions for energy management, and utilization of biotechnology.

Urban Planning

Design of urban spaces for resilience, considering mixed-use development and proximity.

Environmental Sustainability

Respect for natural ecosystems and practices to minimize ecological impact

Justification: a global and local perspective

At Icesi University, the Barberi School of Engineering, Design, and Applied Sciences fosters talent and knowledge to empower academic, social, public, and private organizations

Main Objective

To provide participants with an understanding of the strategic use of technology for the design and management of sustainable urban solutions, recognizing the key role of nature and ecosystems as living infrastructure for resilient and smart cities. The program promotes an multidisciplinary an interdisciplinary approach to identify fundamental concepts in urban planning, inclusive mobility, public policies, governance, and environmental sustainability, integrating biodiversity, ecosystem services, and nature-based solutions.

Specific Objectives

Identify the principles of smart cities and their integration into sustainable urban planning

Describe emerging technologies such as Data Science, IoT, and AI applied to urban management

Distinguish sustainable mobility solutions and their relationship with urban design

Recognize key concepts of renewable energy and biotechnology in urban ecosystems

Observe and analyze public policies and alliances that promote sustainable cities in Latin America

Modules of the Diploma

Sustainable Urban Planning	Emerging Technologies and Data Science	Inclusive Mobility and TOD (Transit- Oriented Development)	Innovative Energy Systems and Biotechnology	Public Policies, Governance, and Public- Private Alliances		
Focuses on innovative models for sustainable urban planning	Explores the role of emerging technologies and data science in the development of smart cities	Highlights the development of transit-oriented transport for inclusive mobility	Covers innovative energy and biotechnology systems for sustainable urban ecosystems	Discusses public policies, governance, and public-private alliances for smart cities.		
4 Classes	5 Classes	4 Classes	7 Classes	4 Classes		

esi

Module 1. Sustainable Urban Planning: Innovative Models for the Present and Future of Cities

Class 1: Evolution of Urbanism - Historical Perspective and Lessons for the Future	Analysis of the evolution of urbanism and lessons learned, with examples of cities
Short-Distance Cities, 15-Minute City, Soft City, Superblocks	Class 2: Compact and Sustainable Urban Models
Class 3: Collaborative and Participatory Urban Design for Urban Regeneration	Innovative Approaches: Tactical Urbanism, Urban Acupuncture, and Place Making
Urban Norms that Regulate the Transformation of Cities	Class 4: Urban Planning and Management for Sustainability

Module 2. Smart Cities: Emerging Technologies and Data Science

	Class 1: Smart Cities - Definition and Fundamental Principles	Introduction to smart cities from a technological, social, and ecological perspective, with analysis of international cases
	Fundamentals of Data Science Applied to Urban Planning and Use of Open Data Platforms	Class 2: Data Science in Urban Management
API	Class 3: Artificial Intelligence in Smart Cities	Basic applications of artificial intelligence in urban services such as traffic, waste management, and security
	Role of Digital Platforms and Open Data in Urban Governance and the Improvement of Quality of Life	Class 4: Digital Platforms and Citizen
		Analysis of the historical and contemporary role of

Class 5: Rivers, Cities, and Ecological Transition

emporary role of rivers in urban configuration. Tools such as satellite maps and AI are examined to understand the urban landscape

••• **GDPR**

Module 3. Inclusive Mobility and Transit-Oriented Development (TOD)

Class 1: Evolution of Mobility and Urban Transformation	Historical perspective and lessons for the future	
Principles of Inclusive Design and "Complete Streets" for All	Class 2: Mobility and Urban Design for Community Well-being	
Class 3: Transit-Oriented Development (TOD) and Planning of High-Density Zones	Promotion of a polycentric city model planned around its public transport systems	
Distribution of Goods and Services, Challenges in Cities and Strategies for Improvement	Class 4: Urban Logistics for Efficient	

Module 4. Energy and Biotechnological Alternatives for Sustainable Urban Ecosystems

Module 5. Public Policy, Governance, and Public-Private Partnerships for Smart and Sustainable Cities

Thank You

First life, then spaces, then buildings (reversing it never works)

Piver swimming

4